Pressure effects on shear deformation of borosilicate glasses

KH Lee and YJ Yang and LF Ding and B Ziebarth and MJ Davis and JC Mauro, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 104, 3073-3086 (2021).

DOI: 10.1111/jace.17678

The shear behaviors of two multicomponent borosilicate glasses, Borofloat (R) 33 (Boro33) and N-BK7 (R) (N-BK7), under different pressures are investigated using molecular dynamics simulations. The addition of alkali ions lowers the yield stress and changes the pressure dependence of shear modulus. Shear-induced densification is observed in both glasses. It is found that the decreases of the oxygen-centered bond angle and the coordination number change of B are responsible for the density changes at low pressures, and the increase of 5-coordinated Si is the dominant mechanism for densification at high pressures. The average shear stresses experienced by Si and B decrease with pressure except that the flow stress of Si at the end of shear deformation in N-BK7. Moreover, the average shear stress of B is more sensitive to the applied pressures compared to Si, suggesting that B is able to relax mechanical stress more easily under pressurized-shear. By analyzing the nonaffine displacement of atoms, it is found that N-BK7 exhibits more localized plastic deformation compared to Boro33 at low pressures and the local rearrangements in both glasses become more homogeneous with increasing pressure. The mean squared nonaffine displacement curves show that alkali ions have the highest mobility induced by shear compared to the network formers and B is more mobile than Si for both glasses. We also observed that plastic deformation tends to take place around boron atoms for Boro33, whereas it occurs in the alkali-rich regions for N-BK7, indicating that these two glasses have different atomic-scale deformation mechanisms.

Return to Publications page