Atomic Dislocations and Bond Rupture Govern Dissolution Enhancement under Acoustic Stimulation

LW Tang and SQ Dong and R Arnold and EC La Plante and JC Vega-Vila and D Prentice and K Ellison and A Kumar and N Neithalath and D Simonetti and G Sant and M Bauchy, ACS APPLIED MATERIALS & INTERFACES, 12, 55399-55410 (2020).

DOI: 10.1021/acsami.0c16424

By focusing the power of sound, acoustic stimulation (i.e., often referred to as sonication) enables numerous "green chemistry" pathways to enhance chemical reaction rates, for instance, of mineral dissolution in aqueous environments. However, a clear understanding of the atomistic mechanism(s) by which acoustic stimulation promotes mineral dissolution remains unclear. Herein, by combining nanoscale observations of dissolving surface topographies using vertical scanning interferometry, quantifications of mineral dissolution rates via analysis of solution compositions using inductively coupled plasma optical emission spectrometry, and classical molecular dynamics simulations, we reveal how acoustic stimulation induces dissolution enhancement. Across a wide range of minerals (Mohs hardness ranging from 3 to 7, surface energy ranging from 0.3 to 7.3 J/m(2), and stacking fault energy ranging from 0.8 to 10.0 J/m(2)), we show that acoustic fields enhance mineral dissolution rates (reactivity) by inducing atomic dislocations and/or atomic bond rupture. The relative contributions of these mechanisms depend on the mineral's underlying mechanical properties. Based on this new understanding, we create a unifying model that comprehensively describes how cavitation and acoustic stimulation processes affect mineral dissolution rates.

Return to Publications page