Critical Shear Rate of Polymer-Enhanced Hydraulic Fluids

P Panwar and P Michael and M Devlin and A Martini, LUBRICANTS, 8, 102 (2020).

DOI: 10.3390/lubricants8120102

Many application-relevant fluids exhibit shear thinning, where viscosity decreases with shear rate above some critical shear rate. For hydraulic fluids formulated with polymeric additives, the critical shear rate is a function of the molecular weight and concentration of the polymers. Here we present a model for predicting the critical shear rate and Newtonian viscosity of fluids, with the goal of identifying a fluid that shear thins in a specific range relevant to hydraulic pumps. The model is applied to predict the properties of fluids comprising polyisobutene polymer and polyalphaolefin base oil. The theoretical predictions are validated by comparison to viscosities obtained from experimental measurements and molecular dynamics simulations across many decades of shear rates. Results demonstrate that the molecular weight of the polymer plays a key role in determining the critical shear rate, whereas the concentration of polymer primarily affects the Newtonian viscosity. The simulations are further used to show the molecular origins of shear thinning and critical shear rate. The atomistic simulations and simple model developed in this work can ultimately be used to formulate polymer-enhanced fluids with ideal shear thinning profiles that maximize the efficiency of hydraulic systems.

Return to Publications page