Influence of micro grooves of diamond tool on silicon cutting: a molecular dynamic study

CL Liu and JG Zhang and JJ Zhang and X Chen and WB He and JF Xiao and JF Xu, MOLECULAR SIMULATION, 46, 92-101 (2020).

DOI: 10.1080/08927022.2019.1675884

During single-point diamond turning of hard and brittle materials, tool wear is a dominant factor that influences machinability. In the wear process, micro grooves on the flank face is an important character of tool wear, which leads to the formation of subcutting edges and the ductile to brittle transition. In this paper, classical molecular dynamic simulations of nanometric cutting of silicon by a diamond tool with V-shape grooves were carried out to explore the effect of groove geometry on the workpiece and tool integrity. The evolution of tool wear and machined surface integrity was discussed. Simulation result shows that grooves have a significant influence on the stress and temperature distributions of the tool, which has a great influence on tool deterioration. Grooves with sharp edges will lead to severe tool wear and bring deep subsurface damage of the machined surface. However, the subsurface damage of the machined surface can be restrained with blunt grooves since the pressure is reduced. With a comprehensive understanding and controlling of groove, tool wear can be suppressed and high-quality surface can be achieved.

Return to Publications page