Accurate calculation of zero point energy from molecular dynamics simulations of liquids and their mixtures

A Tiwari and C Honingh and B Ensing, JOURNAL OF CHEMICAL PHYSICS, 151, 244124 (2019).

DOI: 10.1063/1.5131145

The two-phase thermodynamic (2PT) method is used to compute the zero point energy (ZPE) of several liquids and their mixtures. The 2PT method uses the density of states (DoS), which is computed from the velocity autocorrelation (VAC) function obtained from a short classical molecular dynamics trajectory. By partitioning the VAC and the DoS of a fluid into solid and gaslike components, quantum mechanical corrections to thermodynamical properties can be computed. The ZPE is obtained by combining the partition function of the quantum harmonic oscillator with the vibrational part of the solidlike DoS. The resulting ZPE is found to be in excellent agreement with both experimental and ab initio results. Solvent effects such as hydrogen bonding and polarization can be included by the utilization of ab initio density functional theory based molecular dynamics simulations. It is found that these effects significantly influence the DoS of water molecules. The obtained results demonstrate that the 2PT model is a powerful method for efficient ZPE calculations, in particular, to account for solvent effects and polarization. Published under license by AIP Publishing.

Return to Publications page