Multi-scale simulation of soft materials by using LAMMPS and OCTA/J-OCTA

Taku OZAWA

JSOL Corporation

[Reference] J. Chem. Phys., 117, 8153 (2002)

Summary

Molecular Dynamics (MD) of soft materials has to treat the long-time relaxation phenomena.

- Coarse Grained (CG) model
- Equilibrium (phase separated) structure by using the results of Self Consistent Field Theory (SCFT)
- Parallel MD simulation by using LAMMPS to calculate long-time relaxation and slow deformation

Effective simulation scheme for soft materials

ABA tri-block copolymer (Thermo Plastic Elastomer) / Phase separated structure

- Equilibrium Structure by using SCFT and DBMC
- Non-bond potential = LJ
 - ε=1.0, σ=1.0 $r_{cut off} = 2.5(Red/Red)$ 1.5(Red/Yellow)
 - → Red = hard segment Yellow = soft segment

21/6(Yellow/Yellow)

- Bond potential = FENE
- Periodic boundary condition
- Converter function of J-OCTA from COGNAC to LAMMPS

- High speed parallel calculation
- Langevin Dynamics (Kremer-Grest model), T=0.4
- Yellow block is rubber state under the elongation, because the elongation speed is lower than

Future Work

- CGMD with coarse grained potential obtained from atomistic model
- Comparison between experiment and simulation
- Other phase separated structures

